盤點視覺SLAM技術(shù)在各領(lǐng)域的應(yīng)用
2018/10/10 15:23:15 標(biāo)簽:中國傳動網(wǎng)
當(dāng)今科技發(fā)展速度飛快,想讓用戶在AR/VR、機器人、無人機、無人駕駛領(lǐng)域體驗加強,還是需要更多前沿技術(shù)做支持,SLAM就是其中之一。實際上,有人就曾打比方,若是手機離開了WIFI和數(shù)據(jù)網(wǎng)絡(luò),就像無人車和機器人,離開了SLAM一樣。
什么是SLAM
SLAM的英文全稱是SimultaneousLocalizationandMapping,中文稱作「同時定位與地圖創(chuàng)建」。
SLAM試圖解決這樣的問題:一個機器人在未知的環(huán)境中運動,如何通過對環(huán)境的觀測確定自身的運動軌跡,同時構(gòu)建出環(huán)境的地圖。SLAM技術(shù)正是為了實現(xiàn)這個目標(biāo)涉及到的諸多技術(shù)的總和。
SLAM通常包括如下幾個部分,特征提取,數(shù)據(jù)關(guān)聯(lián),狀態(tài)估計,狀態(tài)更新以及特征更新等。
我們引用知乎上的一個解釋把它翻譯成大白話,就是:
當(dāng)你來到一個陌生的環(huán)境時,為了迅速熟悉環(huán)境并完成自己的任務(wù)(比如找飯館,找旅館),你應(yīng)當(dāng)做以下事情:
a.用眼睛觀察周圍地標(biāo)如建筑、大樹、花壇等,并記住他們的特征(特征提取)
b.在自己的腦海中,根據(jù)雙目獲得的信息,把特征地標(biāo)在三維地圖中重建出來(三維重建)
c.當(dāng)自己在行走時,不斷獲取新的特征地標(biāo),并且校正自己頭腦中的地圖模型(bundleadjustmentorEKF)
d.根據(jù)自己前一段時間行走獲得的特征地標(biāo),確定自己的位置(trajectory)
e.當(dāng)無意中走了很長一段路的時候,和腦海中的以往地標(biāo)進行匹配,看一看是否走回了原路(loop-closuredetection)。實際這一步可有可無。
以上五步是同時進行的,因此是simultaneouslocalizationandmapping.
傳感器與視覺SLAM框架
智能機器人技術(shù)在世界范圍內(nèi)得到了大力發(fā)展。人們致力于把機器人用于實際場景:從室內(nèi)的移動機器人,到野外的自動駕駛汽車、空中的無人機、水下環(huán)境的探測機器人等等,均得到了廣泛的關(guān)注。
沒有準(zhǔn)確的定位與地圖,掃地機就無法在房間自主地移動,只能隨機亂碰;家用機器人就無法按照指令準(zhǔn)確到達某個房間。此外,在虛擬現(xiàn)實(VirtualReality)和增強現(xiàn)實技術(shù)(ArgumentReality)中,沒有SLAM提供的定位,用戶就無法在場景中漫游。在這幾個應(yīng)用領(lǐng)域中,人們需要SLAM向應(yīng)用層提供空間定位的信息,并利用SLAM的地圖完成地圖的構(gòu)建或場景的生成。
當(dāng)我們談?wù)揝LAM時,最先問到的就是傳感器。SLAM的實現(xiàn)方式與難度和傳感器的形式與安裝方式密切相關(guān)。傳感器分為激光和視覺兩大類,視覺下面又分三小方向。下面就帶你認識這個龐大家族中每個成員的特性。
1.傳感器之激光雷達
激光雷達是最古老,研究也最多的SLAM傳感器。它們提供機器人本體與周圍環(huán)境障礙物間的距離信息。常見的激光雷達,例如SICK、Velodyne還有我們國產(chǎn)的rplidar等,都可以拿來做SLAM。激光雷達能以很高精度測出機器人周圍障礙點的角度和距離,從而很方便地實現(xiàn)SLAM、避障等功能。
主流的2D激光傳感器掃描一個平面內(nèi)的障礙物,適用于平面運動的機器人(如掃地機等)進行定位,并建立2D的柵格地圖。這種地圖在機器人導(dǎo)航中很實用,因為多數(shù)機器人還不能在空中飛行或走上臺階,仍限于地面。在SLAM研究史上,早期SLAM研究幾乎全使用激光傳感器進行建圖,且多數(shù)使用濾波器方法,例如卡爾曼濾波器與粒子濾波器等。
激光的優(yōu)點是精度很高,速度快,計算量也不大,容易做成實時SLAM。缺點是價格昂貴,一臺激光動輒上萬元,會大幅提高一個機器人的成本。因此激光的研究主要集中于如何降低傳感器的成本上。對應(yīng)于激光的EKF-SLAM理論方面,因為研究較早,現(xiàn)在已經(jīng)非常成熟。與此同時,人們也對EKF-SLAM的缺點也有較清楚的認識,例如不易表示回環(huán)、線性化誤差嚴(yán)重、必須維護路標(biāo)點的協(xié)方差矩陣,導(dǎo)致一定的空間與時間的開銷,等等。
2.、傳感器之視覺SLAM
視覺SLAM是21世紀(jì)SLAM研究熱點之一,一方面是因為視覺十分直觀,不免令人覺得:為何人能通過眼睛認路,機器人就不行呢?另一方面,由于CPU、GPU處理速度的增長,使得許多以前被認為無法實時化的視覺算法,得以在10Hz以上的速度運行。硬件的提高也促進了視覺SLAM的發(fā)展。
以傳感器而論,視覺SLAM研究主要分為三大類:單目、雙目(或多目)、RGBD。其余還有魚眼、全景等特殊相機,但是在研究和產(chǎn)品中都屬于少數(shù)。此外,結(jié)合慣性測量器件(InertialMeasurementUnit,IMU)的視覺SLAM也是現(xiàn)在研究熱點之一。就實現(xiàn)難度而言,我們可以大致將這三類方法排序為:單目視覺>雙目視覺>RGBD。
單目相機SLAM簡稱MonoSLAM,即只用一支攝像頭就可以完成SLAM。這樣做的好處是傳感器特別的簡單、成本特別的低,所以單目SLAM非常受研究者關(guān)注。相比別的視覺傳感器,單目有個最大的問題,就是沒法確切地得到深度。這是一把雙刃劍。
一方面,由于絕對深度未知,單目SLAM沒法得到機器人運動軌跡以及地圖的真實大小。直觀地說,如果把軌跡和房間同時放大兩倍,單目看到的像是一樣的。因此,單目SLAM只能估計一個相對深度,在相似變換空間Sim(3)中求解,而非傳統(tǒng)的歐氏空間SE(3)。如果我們必須要在SE(3)中求解,則需要用一些外部的手段,例如GPS、IMU等傳感器,確定軌跡與地圖的尺度(Scale)。
另一方面,單目相機無法依靠一張圖像獲得圖像中物體離自己的相對距離。為了估計這個相對深度,單目SLAM要靠運動中的三角測量,來求解相機運動并估計像素的空間位置。即是說,它的軌跡和地圖,只有在相機運動之后才能收斂,如果相機不進行運動時,就無法得知像素的位置。同時,相機運動還不能是純粹的旋轉(zhuǎn),這就給單目SLAM的應(yīng)用帶來了一些麻煩,好在日常使用SLAM時,相機都會發(fā)生旋轉(zhuǎn)和平移。不過,無法確定深度同時也有一個好處:它使得單目SLAM不受環(huán)境大小的影響,因此既可以用于室內(nèi),又可以用于室外。
相比于單目,雙目相機通過多個相機之間的基線,估計空間點的位置。與單目不同的是,立體視覺既可以在運動時估計深度,亦可在靜止時估計,消除了單目視覺的許多麻煩。不過,雙目或多目相機配置與標(biāo)定均較為復(fù)雜,其深度量程也隨雙目的基線與分辨率限制。通過雙目圖像計算像素距離,是一件非常消耗計算量的事情,現(xiàn)在多用FPGA來完成。
RGBD相機是2010年左右開始興起的一種相機,它最大的特點是可以通過紅外結(jié)構(gòu)光或Time-of-Flight原理,直接測出圖像中各像素離相機的距離。因此,它比傳統(tǒng)相機能夠提供更豐富的信息,也不必像單目或雙目那樣費時費力地計算深度。目前常用的RGBD相機包括Kinect/KinectV2、Xtion等。不過,現(xiàn)在多數(shù)RGBD相機還存在測量范圍窄、噪聲大、視野小等諸多問題。出于量程的限制,主要用于室內(nèi)SLAM。
SLAM框架之視覺里程計
視覺SLAM幾乎都有一個基本的框架。一個SLAM系統(tǒng)分為四個模塊(除去傳感器數(shù)據(jù)讀取):VO、后端、建圖、回環(huán)檢測。
VisualOdometry,即視覺里程計。它估計兩個時刻機器人的相對運動(Ego-motion)。在激光SLAM中,我們可以將當(dāng)前的觀測與全局地圖進行匹配,用ICP求解相對運動。而對于相機,它在歐氏空間里運動,我們經(jīng)常需要估計一個三維空間的變換矩陣——SE3或Sim3(單目情形)。求解這個矩陣是VO的核心問題,而求解的思路,則分為基于特征的思路和不使用特征的直接方法。
特征匹配
基于特征的方法是目前VO的主流方式。對于兩幅圖像,首先提取圖像中的特征,然后根據(jù)兩幅圖的特征匹配,計算相機的變換矩陣。最常用的是點特征,例如Harris角點、SIFT、SURF、ORB。如果使用RGBD相機,利用已知深度的特征點,就可以直接估計相機的運動。給定一組特征點以及它們之間的配對關(guān)系,求解相機的姿態(tài),該問題被稱為PnP問題(Perspective-N-Point)。PnP可以用非線性優(yōu)化來求解,得到兩個幀之間的位置關(guān)系。
不使用特征進行VO的方法稱為直接法。它直接把圖像中所有像素寫進一個位姿估計方程,求出幀間相對運動。例如,在RGBDSLAM中,可以用ICP(IterativeClosestPoint,迭代最近鄰)求解兩個點云之間的變換矩陣。對于單目SLAM,我們可以匹配兩個圖像間的像素,或者像圖像與一個全局的模型相匹配。直接法的典型例子是SVO和LSD-SLAM。它們在單目SLAM中使用直接法,取得了較好的效果。目前看來,直接法比特征VO需要更多的計算量,而且對相機的圖像采集速率也有較高的要求。
SLAM框架之后端
在VO估計幀間運動之后,理論上就可以得到機器人的軌跡了。然而視覺里程計和普通的里程計一樣,存在累積誤差的問題(Drift)。直觀地說,在t1和t2時刻,估計的轉(zhuǎn)角比真實轉(zhuǎn)角少1度,那么之后的軌跡就全部少掉了這1度。時間一長,建出的房間可能由方形變成了多邊形,估計出的軌跡亦會有嚴(yán)重的漂移。所以在SLAM中,還會把幀間相對運動放到一個稱之為后端的程序中進行加工處理。
早期的SLAM后端使用濾波器方式。由于那時還未形成前后端的概念,有時人們也稱研究濾波器的工作為研究SLAM。SLAM最早的提出者R.Smith等人就把SLAM建構(gòu)成了一個EKF(ExtendedKalmanFilter,擴展卡爾曼濾波)問題。他們按照EKF的形式,把SLAM寫成了一個運動方程和觀測方式,以最小化這兩個方程中的噪聲項為目的,使用典型的濾波器思路來解決SLAM問題。
當(dāng)一個幀到達時,我們能(通過碼盤或IMU)測出該幀與上一幀的相對運動,但是存在噪聲,是為運動方程。同時,通過傳感器對路標(biāo)的觀測,我們測出了機器人與路標(biāo)間的位姿關(guān)系,同樣也帶有噪聲,是為觀測方程。通過這兩者信息,我們可以預(yù)測出機器人在當(dāng)前時刻的位置。同樣,根據(jù)以往記錄的路標(biāo)點,我們又能計算出一個卡爾曼增益,以補償噪聲的影響。于是,對當(dāng)前幀和路標(biāo)的估計,即是這個預(yù)測與更新的不斷迭代的過程。
21世紀(jì)之后,SLAM研究者開始借鑒SfM(StructurefromMotion)問題中的方法,把捆集優(yōu)化(BundleAdjustment)引入到SLAM中來。優(yōu)化方法和濾波器方法有根本上的不同。它并不是一個迭代的過程,而是考慮過去所有幀中的信息。通過優(yōu)化,把誤差平均分到每一次觀測當(dāng)中。在SLAM中的BundleAdjustment常常以圖的形式給出,所以研究者亦稱之為圖優(yōu)化方法(GraphOptimization)。圖優(yōu)化可以直觀地表示優(yōu)化問題,可利用稀疏代數(shù)進行快速的求解,表達回環(huán)也十分的方便,因而成為現(xiàn)今視覺SLAM中主流的優(yōu)化方法。
SLAM框架之回環(huán)檢測
回環(huán)檢測,又稱閉環(huán)檢測(Loopclosuredetection),是指機器人識別曾到達場景的能力。如果檢測成功,可以顯著地減小累積誤差?;丨h(huán)檢測實質(zhì)上是一種檢測觀測數(shù)據(jù)相似性的算法。對于視覺SLAM,多數(shù)系統(tǒng)采用目前較為成熟的詞袋模型(Bag-of-Words,BoW)。詞袋模型把圖像中的視覺特征(SIFT,SURF等)聚類,然后建立詞典,進而尋找每個圖中含有哪些“單詞”(word)。也有研究者使用傳統(tǒng)模式識別的方法,把回環(huán)檢測建構(gòu)成一個分類問題,訓(xùn)練分類器進行分類。
回環(huán)檢測的難點在于,錯誤的檢測結(jié)果可能使地圖變得很糟糕。這些錯誤分為兩類:1.假陽性(FalsePositive),又稱感知偏差(PerceptualAliasing),指事實上不同的場景被當(dāng)成了同一個;2.假陰性(FalseNegative),又稱感知變異(PerceptualVariability),指事實上同一個場景被當(dāng)成了兩個。感知偏差會嚴(yán)重地影響地圖的結(jié)果,通常是希望避免的。一個好的回環(huán)檢測算法應(yīng)該能檢測出盡量多的真實回環(huán)。研究者常常用準(zhǔn)確率-召回率曲線來評價一個檢測算法的好壞。
SLAM技術(shù)目前主要應(yīng)用在哪些領(lǐng)域?
目前,SLAM(即時定位與地圖構(gòu)建)技術(shù)主要被運用于無人機、無人駕駛、機器人、AR、智能家居等領(lǐng)域,從各應(yīng)用場景入手,促進消費升級。
機器人
激光+SLAM是目前機器人自主定位導(dǎo)航所使用的主流技術(shù)。激光測距相比較于圖像和超聲波測距,具有良好的指向性和高度聚焦性,是目前最可靠、穩(wěn)定的定位技術(shù)。激光雷達傳感器獲取地圖信息,構(gòu)建地圖,實現(xiàn)路徑規(guī)劃與導(dǎo)航。
無人駕駛
無人駕駛是近年來較火的話題之一,Google、Uber、百度等企業(yè)都在加速研發(fā)無人駕駛相關(guān)技術(shù),搶占先機。
隨著城市物聯(lián)網(wǎng)和智能系統(tǒng)的完善,無人駕駛必是大勢所趨。無人駕駛利用激光雷達傳感器(Velodyne、IBEO等)作為工具,獲取地圖數(shù)據(jù),并構(gòu)建地圖,規(guī)避路程中遇到的障礙物,實現(xiàn)路徑規(guī)劃。跟SLAM技術(shù)在機器人領(lǐng)域的應(yīng)用類似,只是相比較于SLAM在機器人中的應(yīng)用,無人駕駛的雷達要求和成本要明顯高于機器人。
無人機
無人機在飛行的過程中需要知道哪里有障礙物,該怎么規(guī)避,怎么重新規(guī)劃路線。顯然,這是SLAM技術(shù)的應(yīng)用。但無人機飛行的范圍較大,所以對精度的要求不高,市面上其他的一些光流、超聲波傳感器可以作為輔助。
AR
AR通過電腦技術(shù),將虛擬的信息應(yīng)用到真實世界,真實的環(huán)境和虛擬的物體實時地疊加到了同一個畫面或空間同時存在。這一畫面的實現(xiàn),離不開SLAM技術(shù)的實時定位。雖然在AR行業(yè)有很多可代替技術(shù),但是,SLAM技術(shù)是最理想的定位導(dǎo)航技術(shù)。
相較于SLAM在機器人、無人駕駛等領(lǐng)域的應(yīng)用,在AR行業(yè)的應(yīng)用則有很多不同點。
1、精度上:AR一般更關(guān)注于局部精度,要求恢復(fù)的相機運動避免出現(xiàn)漂移、抖動,這樣疊加的虛擬物體才能看起來與現(xiàn)實場景真實地融合在一起。但在機器人和無人駕駛領(lǐng)域則一般更關(guān)注全局精度,需要恢復(fù)的整條運動軌跡誤差累積不能太大,循環(huán)回路要能閉合,而在某個局部的漂移、抖動等問題往往對機器人應(yīng)用來說影響不大。
2、效率上:AR需要在有限的計算資源下實時求解,人眼的刷新率為24幀,所以AR的計算效率通常需要到達30幀以上;機器人本身運動就很慢,可以把幀率降低,所以對算法效率的要求相對較低。
3、配置上:AR對硬件的體積、功率、成本等問題比機器人更敏感,比如機器人上可以配置魚眼、雙目或深度攝像頭、高性能CPU等硬件來降低SLAM的難度,而AR應(yīng)用更傾向于采用更為高效、魯邦的算法達到需求。
多傳感器融合、優(yōu)化數(shù)據(jù)關(guān)聯(lián)與回環(huán)檢測、與前端異構(gòu)處理器集成、提升魯棒性和重定位精度都是SLAM技術(shù)接下來的發(fā)展方向,但這些都會隨著消費刺激和產(chǎn)業(yè)鏈的發(fā)展逐步解決。就像手機中的陀螺儀一樣,在不久的將來,也會飛入尋常百姓家,改變?nèi)祟惖纳睢?/p>
供稿:網(wǎng)絡(luò)轉(zhuǎn)載
本文鏈接:http://www.baqblw.cn/content.aspx?url=rew&id=824
相關(guān)新聞
- 2018-10-10盤點視覺SLAM技術(shù)在各領(lǐng)域的應(yīng)用
成員中心
- 上海會通自動化科技發(fā)展有限公
- 中達電通股份有限公司
- 長春禹衡光學(xué)有限公司
- 睿工業(yè)
- 廣東美的智能科技有限公司
- 高創(chuàng)傳動科技開發(fā)(深圳)有限
- 南京埃斯頓自動化股份有限公司
- 哈爾濱工業(yè)大學(xué)
- 深圳市機械行業(yè)協(xié)會
- 廣東省自動化學(xué)會
- 廣東省機械工程學(xué)會
- 華南智能機器人創(chuàng)新研究院
- 深圳市機器人協(xié)會
- 富士康科技集團
- 深圳眾為興技術(shù)股份有限公司
- 南京誠達運動控制系統(tǒng)有限公司
- 常州精納電機有限公司
- 杭州之山智控技術(shù)有限公司
- 杭州中達電機有限公司
- 杭州日鼎控制技術(shù)有限公司
- 杭州米格電機有限公司
- 上海新時達電氣股份有限公司
- 上海登奇機電技術(shù)有限公司
- 上海三竹機電設(shè)備有限公司
- 深圳市艾而特工業(yè)自動化設(shè)備有
- 深圳市億維自動化技術(shù)有限公司
- 湖南科力爾電機股份有限公司
- 深圳市四方電氣技術(shù)有限公司
- 武漢邁信電氣技術(shù)有限公司
- 廣東省珠峰電氣股份有限公司
- 清能德創(chuàng)電氣技術(shù)(北京)有限公
- 畢孚自動化設(shè)備貿(mào)易(上海)有
- 富士電機(中國)有限公司
- 松下電器機電(上海)有限公司
- 路斯特運動控制技術(shù)(上海)有
- 西門子(中國)有限公司
- ABB(中國)有限公司
- 施耐德電氣(中國)投資有限公
- 丹佛斯(中國)投資有限公司
- 三菱電機自動化(上海)有限公
- 安川電機(中國)有限公司
- 歐姆龍自動化(中國)有限公司
- 山洋電氣(上海)貿(mào)易有限公司
- 柯馬(上海)工程有限公司
- 康耐視
- 埃莫運動控制技術(shù)(上海)有限
- 上海安浦鳴志自動化設(shè)備有限公
- 諾德(中國)傳動設(shè)備有限公司
- 利萊森瑪電機科技(福州)有限
- 易格斯(上海)拖鏈系統(tǒng)有限公
- ACS Motion Control(弘柏商貿(mào)(
- 蘇州鈞和伺服科技有限公司
- 北京研華興業(yè)電子科技有限公司
- 臺安科技(無錫)有限公司
- 海頓直線電機(常州)有限公司
- 杭州摩恩電機有限公司
- 梅勒電氣(武漢)有限公司
- 亞德諾半導(dǎo)體技術(shù)有限公司
- 上海摯驅(qū)電氣有限公司
- 上海鴻康電器有限公司
- 上海開通數(shù)控有限公司
- 上海翡葉動力科技有限公司
- 上海維宏電子科技股份有限公司
- 上海弈貓科技有限公司
- 和椿自動化(上海)有限公司
- 光洋電子(無錫)有限公司
- 圖爾克(天津)傳感器有限公司
- 堡盟電子(上海)有限公司
- 廣東西克智能科技有限公司
- 約翰內(nèi)斯·海德漢博士(中國)
- 宜科(天津)電子有限公司
- 美國邦納工程國際有限公司
- 庫伯勒(北京)自動化設(shè)備貿(mào)易
- 奧托尼克斯電子(嘉興)有限公
- 皮爾磁工業(yè)自動化(上海)有限
- 易盼軟件(上海)有限公司
- 深圳市凱德電線電纜有限公司
- 恒科鑫(深圳)智能科技有限公
- 深圳市英威騰電氣股份有限公司
- 深圳威科達科技有限公司
- 深圳市微秒控制技術(shù)有限公司
- 深圳易能電氣技術(shù)股份有限公司
- 深圳市正運動技術(shù)有限公司
- 深圳市合信自動化技術(shù)有限公司
- 深圳市吉恒達科技有限公司
- 深圳銳特機電有限公司
- 深圳市顧美科技有限公司
- 深圳安納赫科技有限公司
- 深圳市金寶佳電氣有限公司
- 深圳市泰格運控科技有限公司
- 深圳市麥格米特驅(qū)動技術(shù)有限公
- 深圳市匯川技術(shù)股份有限公司
- 深圳市庫馬克新技術(shù)股份有限公
- 深圳市藍海華騰技術(shù)股份有限公
- 深圳市正弦電氣股份有限公司
- 深圳市艾威圖技術(shù)有限公司
- 無錫信捷電氣股份有限公司
- 臺州市格特電機有限公司
- 天津龍創(chuàng)恒盛實業(yè)有限公司
- 武漢華中數(shù)控股份有限公司
- 四川零點自動化系統(tǒng)有限公司
- 庸博(廈門)電氣技術(shù)有限公司
- 北京凱恩帝數(shù)控技術(shù)有限責(zé)任公
- 北京配天技術(shù)有限公司
- 歐瑞傳動電氣股份有限公司
- 航天科技集團公司第九研究院
- 西安微電機研究所
- 蘭州電機股份有限公司
- 太倉摩力伺服技術(shù)有限公司
- 泰志達(蘇州)自控科技有限公
- 無錫創(chuàng)正科技有限公司
- 寧波菲仕電機技術(shù)有限公司
- 杭州中科賽思伺服電機有限公司
- 世協(xié)電機股份有限公司
- 太倉摩訊伺服電機有限公司
- 浙江禾川科技股份有限公司
- 騰禾精密電機(昆山)有限公司
- 杭州納智電機有限公司
- 杭州德力西集團有限公司
- 嘉興德歐電氣技術(shù)有限公司
- 臥龍電氣集團股份有限公司
- 寧波海天驅(qū)動有限公司
- 德恩科電機(太倉)有限公司
- 常州展帆電機科技有限公司
- 固高科技(深圳)有限公司
- 廣東科動電氣技術(shù)有限公司
- 深圳市百盛傳動有限公司
- 廣州賽孚德電氣有限公司
- 廣州金升陽科技有限公司
- 廣東伊萊斯電機有限公司
- 珠海市臺金科技有限公司
- 東莞市卓藍自動化設(shè)備有限公司
- 東莞新友智能科技有限公司
- 成都思迪機電技術(shù)研究所
- 深圳市英威騰智能控制有限公司
- 深圳市錦凌電子有限公司
- 深圳市雷賽智能控制股份有限公
- 深圳市雷賽控制技術(shù)有限公司
- 橫川機器人(深圳)有限公司
- 武漢久同智能科技有限公司
- 深圳市默貝克驅(qū)動技術(shù)有限公司
- 深圳眾城卓越科技有限公司
- 泉州市桑川電氣設(shè)備有限公司
- 江蘇本川智能電路科技股份有限
- 臺州市金維達電機有限公司
- 深圳市多維精密機電有限公司
- 上海尚通電子有限公司
- 配天機器人技術(shù)有限公司
- 瑞普安華高(無錫)電子科技有
- 深圳市青藍自動化科技有限公司
- 廣東科伺智能股份科技有限公司
- 東莞市成佳電線電纜有限公司
- 深圳市朗宇芯科技有限公司
- 深圳軟贏科技有限公司
- 常州市領(lǐng)華科技自動化有限公司
- 杭州眾川電機有限公司
- 江蘇智馬科技有限公司
- 海禾動力科技(天津)有限公司
- 杭州賽亞傳動設(shè)備有限公司
- 廣州富燁自動化科技有限公司
- 日立產(chǎn)機系統(tǒng)(中國)有限公司
- 魏德米勒電聯(lián)接(上海)有限公
- 東莞市安揚實業(yè)有限公司
- CC-Link協(xié)會
- 北京精準(zhǔn)博達科技有限公司
- 深圳市山龍智控有限公司
- 蘇州偉創(chuàng)電氣設(shè)備技術(shù)有限公司
- 上海相石智能科技有限公司
- 上海米菱電子有限公司
- 深圳市智創(chuàng)電機有限公司
- 深圳市杰美康機電有限公司
- 東莞市亞當(dāng)電子科技有限公司
- 武漢正源高理光學(xué)有限公司
- 珠海凱邦電機制造有限公司
- 上海精浦機電有限公司
- 江蘇略盛電子科技有限公司
- 深圳市研控自動化科技有限公司
- 上海微泓自動化設(shè)備有限公司
- 寧波中大力德智能傳動股份有限
- 成都超德創(chuàng)機電設(shè)備有限公司
- 深圳市合發(fā)齒輪機械有限公司
- 溫州漢橋科技有限公司
- 浙江工商職業(yè)技術(shù)學(xué)院智能制造
- 廣東派萊特智能系統(tǒng)有限公司
- 上海英威騰工業(yè)技術(shù)有限公司
- 寧波中控微電子有限公司
- 普愛納米位移技術(shù)(上海)有限
- 贛州誠正電機有限公司
- 三木普利(天津)有限公司上海
- 無錫新華光精機科技有限公司
- 廣東宏博電子機械有限公司
- 紐泰克斯電線(濰坊)有限公司
- 杭州微光電子股份有限公司
- 北京和利時電機技術(shù)有限公司
- 廣東七科電機科技有限公司
- 艾羅德克運動控制技術(shù)(上海)
- 大連普傳科技股份有限公司
- 托菲傳感技術(shù)(上海)股份有限
- 杭州中科伺爾沃電機技術(shù)有限公
- 蘇州輕工電機廠有限公司
- 國訊芯微(蘇州)科技有限公司
- 鋒樺傳動設(shè)備(上海)有限公司
- 科比傳動技術(shù)(上海)有限公司
- 泰科電子(上海)有限公司
- 廣東速美達自動化股份有限公司
- 安徽謹(jǐn)銘連接系統(tǒng)有限公司
- 沈機(上海)智能系統(tǒng)研發(fā)設(shè)計
- 寧波谷雷姆電子有限公司
- 深圳市人通智能科技有限公司
- 倫茨(上海)傳動系統(tǒng)有限公司
- 連云港杰瑞電子有限公司
- 歐德神思軟件系統(tǒng)(北京)有限
- 河源職業(yè)技術(shù)學(xué)院
- 凌華科技(中國)有限公司
- 浙江銳鷹傳感技術(shù)有限公司
- 廈門唯恩電氣有限公司
- 深圳市高川自動化技術(shù)有限公司
- 北一半導(dǎo)體科技(廣東)有限公
- 深圳市步科電氣有限公司
- 東莞市凱福電子科技有限公司
- 杭州海拓電子有限公司
- 樂星電氣(無錫)有限公司
- 上海奧深精浦科技有限公司
- 崧智智能科技有限公司
- 珠海運控電機有限公司
- 常州拓自達恰依納電線有限公司
- 浙江省諸暨市精益機電制造有限
- 深圳市多賀電氣有限公司
- 上海贏雙電機科技股份有限公司
- 日沖商業(yè)(昆山)有限公司
- 深圳市卓航自動化設(shè)備有限公司
- 蘇州市凌臣采集計算機有限公司
- 南京芯馳半導(dǎo)體科技有限公司
- 福建睿能科技股份有限公司
- 深圳市如本科技有限公司
- 常州市常華電機股份有限公司
- 寧波眾諾電子科技有限公司
- 聯(lián)誠科技集團股份有限公司
- 山東中科伺易智能技術(shù)有限公司
- 廣東奧普特科技股份有限公司
- 上海艾研機電控制系統(tǒng)有限公司
- 長廣溪智能制造(無錫)有限公司
- 句容市百歐電子有限公司
- 深圳市康士達科技有限公司
- 深圳舜昌自動化控制技術(shù)有限公
- 昕芙旎雅商貿(mào)(上海)有限公司
- 北京科迪通達科技有限公司
- 成都中天自動化控制技術(shù)有限公
- 深圳市恒昱控制技術(shù)有限公司
- 眾程技術(shù)(常州)有限公司
- 深圳市好上好信息科技股份有限
- 常州洛源智能科技有限公司
- 昆山艾尼維爾電子有限公司
- 深圳市迪維迅機電技術(shù)有限公司
- 尼得科控制技術(shù)公司
- 傳周半導(dǎo)體科技(上海)有限公
- 納博特南京科技有限公司
- 蘇州海特自動化設(shè)備有限公司
- 深圳市華成工業(yè)控制股份有限公
- 寧波招寶磁業(yè)有限公司
- 南京菲尼克斯電氣有限公司
- 長裕電纜科技(上海)有限公司
- 臺州鑫宇海智能科技股份有限公
- 寧波銀禧機械科技有限公司
- 江蘇睿芯源科技有限公司
- 威圖電子機械技術(shù)(上海)有限公
- 瑪格電子技術(shù)(武漢)有限公司
- 福爾哈貝傳動技術(shù)(太倉)有限公
- 武漢華大新型電機科技股份有限
- 廈門永陞科技有限公司
- 浙江頂峰技術(shù)服務(wù)有限公司
- 上海先楫半導(dǎo)體科技有限公司
- 蘇州阿普奇物聯(lián)網(wǎng)科技有限公司
- 德纜(上海)電線電纜有限公司
- 廣東英瑞沃電氣科技有限公司
- 南京實點電子科技有限公司
- 廣州豐盈機電科技有限公司
- 深圳市百亨電子有限公司
- 蘇州德勝亨電纜科技有限公司
- 嘉興松州工業(yè)科技有限公司
- 蘇州途億通科技有限公司
- 上海數(shù)恩電氣科技有限公司
- 昆山深裕澤電子有限公司